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Abstract

A one degree-of-freedom model is set up which incorporates time-varying mesh stiffness functions and the influence of

unsteady input rotations due to engine speed fluctuations. The stability of the associated parametrically excited system is

analysed by calculating the monodromy matrix via a Newmark scheme. A piecewise constant and a sinusoidal mesh

stiffness functions are considered and it is shown that additional side-band instability zones are generated because of

frequency modulations. The influence of the mesh stiffness variations and damping is discussed.

r 2008 Elsevier Ltd. All rights reserved.
1. Introduction

In this paper, the contribution of velocity-modulated time-varying stiffness functions on dynamic stability is
investigated. The practical application concerns geared systems submitted to velocity fluctuations generated
by live reciprocating engine combustion and inertial effects [1]. As far as the authors are aware, the influence
of this phenomenon on gear dynamic stability has received very little attention and most of the papers in the
literature deal mainly with the analysis of amplitude jumps and rattle noise when contacts between the teeth
are temporarily lost [2,3]. The stability analyses are conducted based on a differential equation with frequency-
modulated multi-harmonic parametric excitations and stability charts are derived which, in the particular case
of gears, illustrate the role of some design parameters.
2. Model

The following assumptions have been considered: (i) tooth shapes are perfect involutes with neither
profile nor lead modifications, (ii) the pinion speed O1(t) for rigid-body conditions and the output torque
CR are imposed (known), and (iii) friction torques are neglected compared to those generated by the
ee front matter r 2008 Elsevier Ltd. All rights reserved.
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Nomenclature

CM, CR torque on pinion, on gear
I1, I2 pinion, gear polar moment of inertia
Rb1, Rb2pinion, gear base radii
u ¼ ðð�Rb1Þ=Rb2Þ speed ratio
Z1, Z2 tooth number on pinion, on gear

Greek symbols

a relative amplitude variation of mesh
stiffness

bb base helix angle
D mesh deflection

e damping factor
rk dimensionless amplitude of speed fluc-

tuation (harmonic k)
W ¼

R t

0 O1ðxÞdx time-dependent pinion angular
variable

y1, y2 torsional degrees of freedom on pinion,
on gear

o0 natural frequency of the system with
averaged mesh stiffness

O10 average (nominal) rigid-body angular
velocity of pinion

O1ðtÞ;O2ðtÞ ¼ uO1ðtÞ rigid-body angular velocity
of pinion, of gear
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normal forces on the mating flanks. The mechanical model shown in Fig. 1 stems from the classic one
degree-of-freedom system which has been widely used for the simulation of gear nonlinear dynamic
behaviour since the late 1950s [4–7]. Introducing the mesh deflection D ¼ cos bbðRb1y1 þ Rb2y2Þ,
the semi-definite equations of motion are transformed into the following differential equation (see
Nomenclature):

€Dþ 2�o0
_Dþ o2

0ð1þ afðtÞÞD ¼ GðtÞ, (1)

where e is the damping factor; o0 ¼ cos bb

ffiffiffiffiffiffiffiffiffiffiffiffiffi
km=M̄

p
is the natural frequency associated with the averaged mesh

stiffness km; M̄ ¼ I1I2=ðI1R2
b2 þ I2R2

b1Þ is the equivalent mass; GðtÞ ¼ ðcos bb=M̄Rb2ÞðCR þ uI2 _O1ðtÞÞ

represents the sum of the nominal resisting torque along with the inertial torque caused by acceleration;
f(t) accounts for the time variations of the mesh stiffness function; y1, y2 are the small torsional angles
superimposed on rigid-body rotations for the pinion and the gear.

Depending on engine technology, ignition order, etc., pinion angular velocity and torque fluctuate
periodically as shown in Fig. 2. A general expression of the pinion speed for rigid-body conditions is
introduced via a Fourier series as:

O1ðtÞ ¼ O10 1þ
X

k

rk sinðkO10tþ jkÞ

" #
, (2)
�1

�2

I1, m1, Rb1

I2, m2, Rb2

k(t)

CM

CR

c

Fig. 1. Torsional gear model.
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Fig. 2. Examples of engine speed fluctuations.
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where O10 is the nominal average angular velocity (constant), k is the harmonic of the rotational speed, rk is
the corresponding dimensionless amplitude and jk is the initial phase. Note that the actual speeds of the
pinion and the gear are O1ðtÞ þ _y1 and uO1ðtÞ þ _y2, respectively.

The mesh stiffness function which accounts for the tooth contact evolutions with rotation can be
decomposed into a Fourier series of generic terms cos nZ1W and sin nZ1W, where W ¼

R t

0 O1ðxÞdx. As a direct
consequence of the speed fluctuations in Eq. (2), the mesh stiffness spectrum comprises frequencies at nZ1O10,
the nominal meshing frequency and its harmonics, plus frequency modulations caused by the time variations
in O1(t). As opposed to the classical constant speed approach, the system period is one pinion revolution and
not the mesh period.

The stability analysis is conducted using the homogeneous equation associated with Eq. (1):

€Dþ 2�o0
_Dþ o2

0ð1þ afðtÞÞD ¼ 0, (3)

in which, f(t) being periodic, is a Mathieu–Hill equation.
According to Floquet’s theory [8], the normal form of the solution to Eq. (3) is:

D ¼ egtGðtÞ, (4)

with G(t) ¼ G(t+T).
Stability is therefore controlled by the characteristic exponent g and the solution is unstable when the real

part of g is positive.
Introducing the state vector XðtÞ ¼ ½

DðtÞ
_DðtÞ
�, it can be shown in Ref. [9] that there is a unique matrix R,

independent of the initial conditions, known as the monodromy matrix which relates the solutions at two
successive periods by:

Xðtþ nTÞ ¼ R � Xðtþ ðn� 1ÞTÞ. (5)

Stability is then characterised by the amplitudes of the eigenvalues ll of R, i.e. the system is unstable when at
least one of the eigenvalues is such that |ll|41.

3. Stability analysis using a Newmark scheme

The literature on the dynamic stability of Mathieu–Hill equations is vast and some valuable syntheses
can be found in the classic textbooks of Bolotin [9], Nayfeh and Mook [10], etc. In this paper, a numerical
approach based on the time-step calculation of the monodromy matrix using an implicit Newmark
scheme is applied to the particular case of gears with velocity-modulated time-varying mesh stiffness.
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Following Refs. [11,12], the equation of motion (3) is discretised under the form

4

dt2
þ

4

dt
�o0 þ o2

0ð1þ afðtþ dtÞÞ

� �
Dðtþ dtÞ

¼ €DðtÞ þ
4

dt
_DðtÞ þ

4

dt2
DðtÞ

� �
þ 2�o0

_DðtÞ þ
2

dt
DðtÞ

� �
, (6)

where dt is a constant time-step.
Substituting with the acceleration at t derived from Eq. (3) as:

€DðtÞ ¼ �2�o0
_DðtÞ � o2

0ð1þ afðtÞÞDðtÞ, (7)

the following form is obtained:

€Dðtþ dtÞ ¼
Bðtþ dtÞ

Aðtþ dtÞ
DðtÞ þ

D

Aðtþ dtÞ
_DðtÞ, (8)

with

Aðtþ dtÞ ¼
4

dt2
þ

4

dt
�o0 þ o2

0ð1þ afðtþ dtÞÞ

� �
,

Bðtþ dtÞ ¼
4

dt2
þ

4

dt
�o0 � o2

0ð1þ afðtþ dtÞÞ

� �
,

D ¼
4

dt
.

The application of the Newmark scheme on speeds leads to:

_Dðtþ dtÞ ¼
2

dt

Bðtþ dtÞ

Aðtþ dtÞ
� 1

� �
DðtÞ þ

2

dt

D

Aðtþ dtÞ
� 1

� �
_DðtÞ (9)

and the transition matrix which relates the state vector between two successive time-steps is derived from
Eqs. (8) and (9) as:

_Xðtþ dtÞ ¼ R1 � XðtÞ, (10)

with

R1 ¼

Bðtþ dtÞ

Aðtþ dtÞ

D

Aðtþ dtÞ

2

dt

Bðtþ dtÞ

Aðtþ dtÞ
� 1

� �
2

dt

D

Aðtþ dtÞ
� 1

2
6664

3
7775.

The monodromy matrix is finally obtained by multiplying the transition matrices so that a complete period T

of the system is covered, i.e. one complete pinion revolution in the example treated:

R ¼
YN
j¼1

Rj ; with N ¼
T

dt
(11)

and stability is studied by analysing the amplitudes of the eigenvalues of R.
4. Applications

For the sake of simplicity, the applications to geared systems in this paper are confined to two idealised
cases: (a) a piecewise variation which, to a certain extent, can be used for the simulations of spur gears and (b)
a sinusoidal variation which is more representative of helical gear time-varying mesh stiffness (Fig. 3). The
gear data are synthesised in Table 1.
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Fig. 3. Examples of modulated mesh stiffness functions: (a) piecewise constant mesh stiffness function and (b) sinusoidal mesh stiffness

function.

Table 1

Gear data

Pinion Gear

Module (mm) 2 2

Pitch diameter (m) 0.06 0.09

Tooth number, Z1, Z2 30 45

Mass (kg) 1.65 3.7125

Speed ratio, u 2/3

Damping factor, e 0 and 0.01

Pressure angle, a0 (en 1) 20

Base helix angle, bb (en 1) 0, 30
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Two different time-varying engine speed models have been considered:
(i)
 a single H2 harmonic variation of speed (modulation at twice the rotational speed) which is frequently
employed in the literature [1],
(ii)
 a more realistic multi-frequency representation comprising H2, H4, and H6 harmonics with relative
amplitudes of 1, 0.75 and 0.25 respectively which is more representative of actual situations.
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For the two cases above, 0%, 2.5%, 5%, 7.5% and 10% of speed variation (peak-to-peak) are considered.
From a numerical point of view, integrations were performed (a) with 32 time-steps per mesh cycle, i.e. 960
time-steps over the system period for the sinusoidal stiffness function and (b) with 64� 30 ¼ 1920 time-steps
in the case of the piecewise stiffness. Several numerical tests were conducted with finer time-steps which
showed no significant variations in the stability boundaries.

It is well known that, for steady state conditions, instability occurs in the vicinity of the critical frequencies
defined as [13–15]:

Z1O10

o0
¼

2

q
; q ¼ integer; (12)

with Z1, pinion tooth number.
In what follows, computations have been performed in the frequency ranges near the major instability

zones for q ¼ 1 and q ¼ 2. The results obtained in the vicinity of q ¼ 1 which are given in the form of 3D
charts (Figs. 4–7) show the instability areas (shaded) versus frequency and mesh stiffness variations
(parameter a) for various speed fluctuation amplitudes. From these stability diagrams, the following
observations can be made:
(a)
Fig.

insta
Regardless of the speed variation characteristics and mesh stiffness functions, the width of the unstable
areas increases as the mesh stiffness variation amplitude a becomes higher.
(b)
 Engine speed fluctuations are found to generate additional secondary instabilities equally spaced around
the main area probably caused by modulation side-bands. Compensation is observed between the main
and lateral unstable zones in terms of frequency bandwidth.
(c)
 Instabilities are broader in the case of a piecewise constant stiffness function compared to a smoother
sinusoidal time variation.
(d)
 Multi-harmonic engine speed fluctuations generate more instability side-bands than mono-harmonic ones
because of their wide ranging spectral contents.
4. Stability diagram—mono-harmonic H2 speed fluctuation, sinusoidal mesh stiffness—no damping (shaded areas correspond to

bility).
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Fig. 5. Stability diagram—mono-harmonic H2 speed fluctuation, piecewise constant mesh stiffness—no damping (shaded areas correspond

to instability).

Fig. 6. Stability diagram—multi-harmonic speed fluctuation, sinusoidal mesh stiffness—no damping (shaded areas correspond to

instability).
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From the analytical analysis of the dynamic response presented in Ref. [16], the potentially critical
frequencies for tooth loading were found to be:

Z1O10

o0
¼

2

qð1� ðhk=Z1ÞÞ
; h ¼ 2k; 2k � 1; 2k � 2, (13)

which correspond to the instability areas observed in Figs. 4–7.
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Fig. 7. Stability diagram—multi-harmonic speed fluctuation, piecewise constant mesh stiffness—no damping (shaded areas correspond to

instability).

Fig. 8. Stability diagram—mono-harmonic H2 speed fluctuation, piecewise constant mesh stiffness—damping factor of 0.01 (shaded areas

correspond to instability).
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The influence of damping is illustrated in Figs. 8 and 9 which show the stability charts obtained with a
damping ratio of 0.01. As expected, damping pushes instabilities towards the higher values of a and reduces
the number of unstable zones related to side-bands. Here again, a piecewise constant mesh stiffness function
(representative of spur gears, say) is more detrimental than a sinusoidal variation.
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Fig. 9. Stability diagram—mono-harmonic H2 speed fluctuation, sinusoidal mesh stiffness—damping factor of 0.01 (shaded areas

correspond to instability).
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Similar trends have been found near q ¼ 2 however, because of space limitations, they are not reported in
this paper.

5. Conclusion

An original model has been presented which accounts for periodic speed fluctuations in geared systems. The
corresponding parametrically excited differential equation exhibits frequency modulated time-varying mesh
stiffness functions which depend on gear geometry and on the characteristics of engine speed variations. Based
on a Newmark scheme, a time-step numerical technique is presented for calculating the monodromy matrix
and analysing the system instability. Several stability diagrams are shown which illustrate the roles of the mesh
stiffness variation amplitude and shape, the characteristics of speed fluctuations and damping. It is found that
additional unstable areas are generated around the major instability typical of gears at constant speed and that
the bandwidths of all the unstable zones are interdependent. Further research is under way in order to
generalise this approach to three-dimensional models and more realistic gear geometries with tooth
modifications and errors.
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